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Abstract—The multiple antenna channel coding problem in Orthogonal
Frequency–Division Multiplexing is reconsidered, because with frequency
interleaving the effective channel characteristic across tones is rather fast
fading and does not comply with the quasi–static channel model widely as-
sumed for space–time codes. We study the fast–fading multiple transmit
and receive antenna channel via evaluation of the capacity of the ergodic
channel. Capacity comparisons give guidelines on how to jointly adjust
coding rate and modulation cardinality. Simulations show that bit–based
coding outperforms space–time codes in fast fading and, furthermore, of-
fers larger flexibility in rate adaptation.
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I. I NTRODUCTION�
HANNEL coding techniques for wireless communications
with transmit and receive diversity is a fairly new field of

research [1]. Performance limits in terms of outage capacity are
derived in [2] for the quasi–static fading channel, while [3] also
covers the capacity for the ergodic fast fading channel.

Space–time codes (STC) [4], [5] are well suited for multiple
antenna transmission in quasi–static (i.e., block–fading) envi-
ronments. Our ultimate aim is to apply codes in Orthogonal
Frequency–Division Multiplexing (OFDM) to transmit over
multipath channels and we realize that the strong channel vari-
ation across tones does not comply with the quasi–static chan-
nel model. Adjacent channel coefficients are not independent
but together with practical frequency interleaving, the resulting
channel can be approximated as independent fast fading.

Obviously, we need to reconsider the multiple antenna chan-
nel coding problem in OFDM to make best use of frequency
diversity in multipath channels. Recent progress has been made
in optimizing the performance of STC in fast fading by search-
ing for better codes [6], [7] or by applying the idea of I–Q (in-
phase and quadrature component) interleaving to STCs [8] but
the question remains, as to whether or not STCs are an appro-
priate channel coding class for fast(er) fading scenarios.

Based on the following results, we conclude that bit–
interleaved coding approaches are able to outperform STCs, be-
cause they rely on binary codes instead of being signal–space
codes like STCs. This feature leads to larger Hamming dis-
tances, which are beneficial in fast fading scenarios. Further, a
larger flexibility in rate adaptation is achieved, which is desir-
able in packet data communication.

II. CHANNEL MODEL

We consider block–wise transmission from��� transmit an-
tennas (Tx) to ��� receive antennas (Rx). The signal con-
stellation in Tx branch� is �	� and the independently cho-
sen and equiprobable signal points are transmitted simulta-
neously. In each frame,
 symbols are transmitted per an-
tenna. For modulation interval (time step)� , the transmit-
ted symbols are collected in the hypersymbol (� �	��
 vector)

��� ���	� � ����� ������������� � ��!�� ���"�$# . Hence, ��� ���&%'� � � ����� � � ��! ,
where � denotes the Cartesian product of constituent signal
constellations. The hypersymbol is transmitted via the noisy
channel to obtain( � �����*) � ��� �+� ����,.- � ��� , /102�304
65 
 . ) � ���
is the � � � ��� matrix with channel coefficients798:� � ��� , which
describe the transmission between the� –th transmit and; –th
receive antenna. The� � �<
 vector ( � ���+� � = � � ���>��������� = ��? � ���@�$#
represents the received samples. The noise samples in the� � �2
 noise vector- � ��� are mutually independent zero–mean
complex Gaussian variates so that the covariance matrix isACBED FHGJI$K BED FMLMION - � � � �$- � ��P��RQEST�VU � � � 5<��P��XW P�OY , where U �[Z � is the
Kronecker delta,W P� �]\&^`_ba is the variance per complex di-
mension, andY is the identity matrix. \ ^ is the one–sided
power spectral density of white noise. We further introduceA9Ndc ��� ��� c P Se�gfihj_`a , where fih is the average energy per hy-
persymbol, i.e., the average total energy transmitted per time
step. Together with

A N c 7 8:� � ��� c P S � 
 , kl;m�>� , and independent7 8n� � ��� , we have
A1Nlc ( � ��� c P So�]���pfih�_ba and the average SNR

per receive antenna isf h _�\&^ .
The following comparisons will be based on finite and dis-

crete signal sets like they are used in practical transmission sys-
tems. We introduce the total number of bits carried in one hy-
persymbol ��� ��� as qr�ts ��!�vu ��w"xjy P c � � c , which is equivalent
to the number of bitlevels in the transmission scheme.

c �3� c is
the cardinality of the constituent signal constellation� � . We
map q bits z�{ into one hypersymbol and the binary vector� z ^ ���������|zm}�~ � � is the label of the hypersymbol.

III. C ODING ARCHITECTURES

A. Space–Time Codes

STCs (space–time codes) are presented in [4], [5]. Binary in-
formation enters the encoder, and in each time step a complex–
valued symbol per antenna is generated according to a code
trellis in such a fashion that diversity and/or coding gain is max-
imized. All transmit antennas use the signal constellation� . In
our view of channel coding, all 2–antenna STC in [4] are ef-
fectively rate–
 _�� codes, so that for each� ��
 output vector��� ����%�� � � (which could carry� w"xjy P c � c

bits), only w"xjy P c � c
bits enter the STC. The space–time decoder directly operates on
the received signal–space samples to estimate the most likely
information sequence.

STCs are signal–space codes, which already indicates that
they might perform poor in fast fading channels with much time
diversity. Furthermore, their inflexible coding rate (in most
cases
 _b� � ) is undesirable if one aims to achieve fine–grained
link adaptation to make best use of the available channel.

B. Bit–Interleaved Coded Modulation

Bit–interleaved coded modulation (BICM) [9] can be ex-
panded to multiple antenna transmission [3], [10] to obtain ad-
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vantages in fast fading channels. A single convolutional code
(CC) encodes information bits and the coded bits are cyclically
distributed into the Tx branches, where they are bit–interleaved
by different interleavers, mapped onto the signal constellation� used in both Tx branches and transmitted. In the receiver, bit
metrics are calculated independently for each bit. The bit met-
rics are deinterleaved and multiplexed into one stream, which
is decoded by a conventional Viterbi algorithm.

The complexity of the bit metric computation is� c � c ��!
(ex-

ponential in� � ). Via the underlying and well–known convolu-
tional codes, the effective coding rate can be adapted in fine–
grained steps by the use of actual rate–��_b� CCs or by punctur-
ing of a mother code of rate
 _b� .

IV. L INK –LEVEL CAPACITY

A. Mutual Information

We investigate the conditional mutual information [3]�l� �+� ( c )'����7 � � ��5�7 � � c (��|)��� q�5 AO� �:��� w"xjy P s�����j� G��l�:�:�@� ��� !C� � � ( c��� �|)��� � � ( c � �|)�� � (1)

(measured in bits per hypersymbol) for one specific known
channel realization) . We exploited equiprobable transmit hy-
persymbols� , i.e.,  �¡�¢ ��£ � 
 _+¤ �`!�vu � c � � c �¥� ~d} . For the pdf
of ( , we assume independent white Gaussian noise and have� � � ( c � �|)'��� �§¦ W P� ��~ ��?C¨�©Oª � 5 c (95�) � c P _`W P� � .
B. Bit Probabilities and Mutual Information on Bitlevels

We obtain the mutual information for the« –th bitlevel ad-
dressing the vector��� ��� — assuming that all other bit positions
in the label of��� ��� are unknown — as [3]�l� z { � ( c )'���¥7 � z { ��5o7 � z { c (¬�m)'�� 
 5 A�­>® K ��¯° ± w"xjy P s �­�® � ² ^ K �|³ � �µ´ ( c �z�{��|)·¶� � � ( c z { �m)·� ¸ ¹º � (2)

We assumed equiprobable bit valuesz�{ , i.e.,  �¡ N z�{lS�� 
 _j� ,
and for the conditional pdf of( , required in (2), we have� �E» ( c z�{��m)·¼V� c � � z�{ � c ~ � s��� �j�+½ ­ ®�¾ � � � ( c¬�� �|)�� , where� � z�{¿� is that subset of the hypersymbol constellation which
complies with the bit values at the respective label positions as
demanded byz { .

C. Channel with Fast Fading

We assume a fast–fading channel so that) � ��� is random
and takes independent values for each� . The matrix entries7 8:� � ��� are mutually uncorrelated zero–mean complex Gaus-
sian random variables with

A N c 798n� � ��� c P S � 
 , kl;m�>� . Hence,
the magnitude of each entry follows a Rayleigh distribution.
The channel parameter is perfectly known for each� and we
are interested in the average mutual information (AMI) for
coded modulation (CM). Due to fast fading, the channel can
be assumed to be ergodic, so that the desired AMI is ob-
tained by averaging over the given channel statistic. This

yields [9]
��À�Á � AOÂ ¢ �l� ��� ( c )�� £ . In perfect correspon-

dence, we introduce the bitlevel AMI of the ergodic channel� { � A ÂÃN �l� z { � ( c )·� S , which is related to the overall AMI

of BICM via [9]
��Ä�ÅÆÀdÁ � s }�~ �{ u¬^ � { . We have

��Ä�ÅÆÀ�Á 0 ��À�Á
,

because the bitlevels are treated as independent binary channels
without exploiting known bits from other levels.

D. Near–Optimum Bit Metrics

For Viterbi channel decoding of the bit–based coding archi-
tectures, we use the log–likelihood metric
 � z { c (��m)·��� w"Ç  �¡ N z�{È� 
 c (E�|) S �¡�¢bz { ��/ c (E�|) £ (3)É w"ÇËÊËÌ © �� �j�+½ ­�® u � ¾ � � � ( c��� �|)'�ÊËÌ © �� �j�+½ ­ ® u�^ ¾ � � � ( c��� �|)'� (4)� 
W P�ÎÍ Ê9Ï Ç�� �j��½ ­�® u�^ ¾ c (Ë5�) �� c P 5 Ê9Ï Ç�� �j��½ ­>® u � ¾ c (Ë5o) �� c P Ð � (5)

which has reasonable complexity after the log–sum (i.e., near-
est representative) approximation. Nonetheless, near–optimum
performance is achieved by this simplified metric.

E. Link–Level Capacity Evaluation in Fast Fading

We randomly generate matrix channels and evaluate AMI in
a Monte–Carlo integration fashion. The results converge fast
and can be considered to be fairly exact. Fig. 1 shows results
for AMI in fast fading achievable with transmission schemes
for a maximum ofqÑ�ÓÒ bits per channel use. This can be
done by either transmitting 16QAM from one antenna or by
transmitting 4PSK from each of two transmit antennas. For fair
comparison, both schemes use either only one receive antenna
or optimum receiver processing with two receive antennas.
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Fig. 1. Mutual information vs. average SNR per Rx antenna for transmission
with Ô<Õ�Ö bits per channel use. 16QAM transmitted from one Tx and
4PSK from two Tx are shown.

Let us first consider the case with two receive antennas: We
see two curves for each of the transmission schemes. One is
for CM (coded modulation) and the other is for BICM (bit–
interleaved coded modulation) [9], which strongly relies on the
Gray labeling of the (constituent) signal constellations. For
16QAM from 1 Tx, we see the well–known result that the
curves for CM and BICM with Gray labeling nearly coincide
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for large SNRs, while exhibiting a negligible gap at lower SNRs
[9]. To be able to compare BICM to space–time trellis codes,
which have effectively rate
 _j� , we look at the horizontal line
at spectral efficiency 2. The zoomed area reveals that the SNR
loss due to using BICM instead of CM is/�� � dB for 16QAM. In
contrast, for 4PSK from two transmit antennas, the gap between
CM and BICM is larger [3] and we find a/�� × Ø dB loss at spec-
tral efficiency 2. Nonetheless, an SNR advantage of/�� Ù¿Ø dB for
the given capacity remains, when moving from 1 Tx 16QAM
BICM to 2 Tx 4PSK BICM. Clearly, this is a capacity compar-
ison, only, but BICM actually translates these gains into an ap-
propriately shifted error rate curve as we will see in Section III.
Notably, the SNR advantage of multiple transmit antennas over
a single transmit antenna is even more obvious at higher spec-
tral efficiencies, so that coding schemes withÚÜÛ 
 _�� is an
interesting direction to be investigated.

In terms of capacity, one should abstain to operate the 4PSK
2 Tx transmission scheme in fast fading with one Rx antenna,
only. It is alarming that the capacity of 2 Tx 4PSK CM is only
slightly better than 1 Tx 16QAM CM and for BICM, 2 Tx 4PSK
is even worse than 1 Tx 16QAM. It appears that in fast fading,
receive diversity is more beneficial than transmit diversity. The
reason for this is that the combination of 2 Tx with 1 Rx leads
for some channel realizations to ambiguities so that (e.g., for7 �v� � 
 and 7 � P � 
 ) the number of distinguishable signal
points in the received hypersymbol set can not be guaranteed. A
second Rx ensures that this ambiguity occurs much less likely.
Maybe this problem is not that visible in capacity computa-
tions with Gaussian instead of discrete input signals. Hence,
the transmit diversity schemes of order 2 in fast fading should
always be operated with� �.Ý � , as otherwise they might be
outperformed by higher–order modulation systems with one Tx
(i.e., well–defined signal constellation), which have even fur-
ther advantages in terms of interference cancellation and hence
in overall system capacity of cellular systems [11].

The above graph indicates the benefits of transmit diversity to
achieve one and the same maximum value of spectral efficiency
but does not yet give a design guideline for the combination of
coding rate and modulation types to obtain a given overall target
spectral efficiency. For this purpose, we compare the AMI of
various signal sets for a� � � system in Fig. 2.
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Fig. 2. Mutual information vs. average SNR per Rx antenna (using 2 Rx) for
one and two Tx with various maximum spectral efficienciesÔ .

Let us first fix 3 bits per channel use as target in the small
zoomed area. Given the larger metric computation complexity
as well as higher accuracy requirements for the channel estima-
tion of 8PSK systems when compared to 4PSK, it might be in-
teresting to use 2 Tx 4PSK with rate–Þ _`Ò code instead of 2 Tx
8PSK with rate–
 _�� code, especially if BICM is considered,
where the capacity gap is/�� Ø dB. If we now consider the sec-
ond zoomed area for 4 bits per channel use, the same reasoning
applies to the comparison of 2 Tx 16QAM with rate
 _�� and
2 Tx 8PSK with rate�¿_`Þ . Here, we have an SNR gap of/��:Ø dB
for BICM. Note also the large performance gap between BICM
and CM, which is 
 � Ø dB for 16QAM and 
 �:� dB for 8PSK.
This penalty is lowered if more Rx antennas are used, like in
Fig. 3, which shows results for the same transmitter scenario
as in Fig. 2 but now with 4 Rx. We again concentrate on 4
bits per channel use and see that in comparison to Fig. 2, the
performance penalty for using BICM instead of CM is lowered
to /�� ×¿Ø dB and /�� Ò Ø dB for 16QAM and 8PSK, respectively.
Hence, a larger number of receive than transmit antennas, i.e.,���ßÛ2� � , reduces the capacity gap between BICM and CM. The
SNR gap for BICM 16QAM with rate
 _�� and 8PSK with rate� _`Þ is with /�� Ø¿Ø dB almost the same as the/��:Ø dB in Fig. 2.
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Fig. 3. Mutual information vs. average SNR per Rx antenna (using 4 Rx) for
one and two Tx with various maximum spectral efficienciesÔ .

Especially with larger numbers of Tx antennas� � , the spec-
tral efficiencies with equal signal sets in all Tx antennas in-
crease in steps of� � , which might be undesirable if the data rate
needs to be adjusted in fine–grained steps. The use of mixed
signal constellations in the Txs enables a bit–wise adaptation
of gross spectral efficiencies during joint design of modulation
cardinality and channel coding rate.

V. SIMULATION RESULTS FORFAST FADING AND OFDM

A. Spectral Efficiency of 2 bit/s/Hz in Fast Fading

In all simulation results, BICM is implemented with suffi-
cient interleaving. For fast fading, the channel matrices are ran-
domly and independently generated. Fig. 4 shows frame error
rate (FER) performance vs. average SNR per Rx antenna for
systems with 2 Rx and with identical target spectral efficiency
of 2 bits per channel use. One frame is
�� 
 Þ¿/ hypersymbols
long so that a total of�j×j/ information and termination bits are
transmitted. The codes with 16 states use four bits for trellis
termination, leaving 256 information bits per frame. We first
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Fig. 4. Frame error rate vs. average SNR per Rx antenna for space–time coding
and BICM coding schemes with rate–1/2 convolutional codes and 2 Rx.

consider the two 16 state 4PSK STC (space–time codes). The
fast–fading optimized STC [6], [7] (markerà ) provides a
 to
 � á dB improvement over the original STC [4] (markerâ ), not
intended for fast fading. For FER below
 /O~�ã (which might
not be interesting for some applications) both STC are outper-
formed by single–Tx 16QAM BICM with rate–
 _�� 
 × state
convolutional coding with octal generators

� ��Þ��vÞ¿Ø¿� . But for
larger tolerated FER, the optimized STC performs better than
the single Tx system. Eq. (5) is used as metric for Viterbi de-
coding in all BICM simulations. At FER below
 /O~ � , the 2 Tx
4PSK BICM system with rate–
 _�� 
 × state convolutional cod-
ing outperforms all others. The slopes of the FER of all BICM
schemes are the same, while the slope of the STC systems is
significantly less steep, indicating their failure to produce a
comparable order of diversity. The BICM schemes enable a
higher degree of diversity. It is worth mentioning that the re-
spective spacing of the FER curves of the bit–based systems
agrees nicely with the AMI curves in Fig. 1. We actually see
the 
 dB shift from 1 Tx 16QAM BICM to 2 Tx 4PSK BICM.
Hence, the gains predicted by capacity considerations actually
translate into shifted FER, justifying the use of the capacity
measure to compare different coding and modulation schemes
with multiple antennas.

B. Spectral Efficiency of 4 bit/s/Hz in Fast Fading

We again consider frames of
4� 
 Þj/ hypersymbols so that
now a total of Øj�j/ information and termination bits are trans-
mitted per frame. In Fig. 3, we compared the 2 Tx 8PSK and
16QAM constellations at this spectral efficiency and found a
difference of /�� Ø¿Ø dB, only. From results not shown here, we
know that the mixed constellation 4PSK/16QAM (with identi-
cal average power in the two Tx) shows negligible difference
to 8PSK/8PSK in terms of AMI. We want to confirm those
similarities by the simulation results in Fig. 5, where we use
a rate–1/2 convolutional code with octal generators

� ��Þ��|Þ¿Ø¿� for
16QAM/16QAM, and a real (non–punctured) rate–2/3 convo-
lutional code with octal generators

� �¿äO�mä�Ø��mäj�j� for 8PSK/8PSK

and 4PSK/16QAM to obtain the spectral efficiency of 4 bits per
channel use. Especially for the balanced signal constellations
paired with different coding rates, the closeness of the error
rate results is striking. The mixed signal constellation performs
slightly worse, because the convolutional code has trouble aver-
aging over 3 strongly different bitlevel capacity values

� { . The
balanced transmission schemes only have 2 different capacity
values on the bitlevels, so that the convolutional code does not
have as much effort to average over them. Expanding the signal
constellation in fading 1 Tx/1 Rx links [12] has large benefits
which are no longer that visible in the multiple antenna sce-
nario. Good correspondence of simulation and capacity results
again justifies the validity of previous capacity comparisons.
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Fig. 5. Frame error rate vs. average SNR per Rx antenna for bit–wrapped
coding schemes with rate–1/2 and rate–2/3 convolutional codes for 2 Tx
and 4 Rx systems.

C. OFDM Channel Model with Multiple Antennas

The transmission link from Tx antenna� to Rx antenna; is
represented by a baud–spaced multipath channel, which is char-
acterized by its finite discrete–time channel impulse responseå 8:� � æ � , /�0 æèçêé , 
 0ê;&0�� � , 
 0��<0���� , i.e., all chan-
nels are of lengthé . The channel taps are zero–mean complex
Gaussian random variables and they are mutually uncorrelated
in time and also across the antennas. We assume the same av-
erage power delay profile for all Tx–Rx links with average tap
power� � æ ��� A N c å 8:� � æ � c P S , kl;m�>� . As indoor model, we use the
exponential average power delay profile� � æ ��� ¯° ± 
 5 ¨ ~ �Hë|ìµíÆîpï
 5 ¨ ~ ì�ëvì�íÆîpï ¨ ~�ð ë|ì íÆîpï �ñ/È0 æòç4é/ó� otherwise

� (6)

whereéËô�õ�ö is a parameter which characterizes the exponential
decay of the average echo power over the channel impulse re-
sponse lengthé . From the special scaling, it follows directly
that the average sum power is normalized tos ì ~ �ð u�^ � � æ �+� 
 .
The parameteréËô�õ�ö is loosely related to the rms delay spread.

For OFDM transmission, it is natural to consider coding
across the tones, because of delay constraints for data trans-
mission. OFDM has a natural blocking of data so that one

1694



OFDM symbol delay is present in the link. Channel coding
over a large number of OFDM symbols would result in mostly
unacceptable overall delays. Further, in a sufficiently scattered
multipath environment the channel fluctuation in time is usually
smaller than the change of channel conditions in frequency, so
that a higher degree of diversity results by coding across tones.
Hence, the discrete–time variable� from Section II is now asso-
ciated with the frequency, and via the
 –point discrete Fourier
transform (DFT), we obtain7 8n� � �����÷s ì ~ �ð u¬^ å 8:� � æ � ¨ ~ ø P|ù F ð ë|ú .
We choose the length of the transmitted signal block
 to be
a power of � , in order to implement the transform with a fast
transform algorithm. The��� � � � channel matrix across the
frequency axis� is given by ) � ���3� � 718n� � ���@� . With éûç 

( éýü 
 ), adjacent channel matrices are (strongly) correlated
and a frequency–domain interleaving of the transmitted hyper-
symbols�ß� ��� decreases the error rate.

D. Spectral Efficiency of 2 bit/s/Hz in OFDM

In [13], the use of STC in OFDM is proposed. To have a
close relationship to the results in the previous sections, where
we investigated block lengths of
 Þj/ , we choose the DFT size
�� 
 �já . Further, we use a channel of lengthé �'á which is
fairly short when compared to
 and should lead to a conserva-
tive estimate, as to whether or not the advantages of bit–based
channel coding schemes over STC, which we observed in ideal
fast fading, still hold for the OFDM channel properties. As
decay parameter, we usedé ô�õ�ö �rÒd� / . An additional block
interleaver of depth
¿
 for the complex symbols is used for
all coding approaches to transform the correlated frequency–
selectivity of the OFDM system into a virtually fast(er) fading
characteristic. Fig. 6 shows the frame error rate performance of
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Fig. 6. Frame error rate vs. average SNR per Rx antenna for space–time coding
and BICM for 2 Tx and 2 Rx in an OFDM system withþÿÕ������ subcar-
riers and a multipath channel with�*Õ�� and �	��

�óÕ�Ö�� � . Results with
and without frequency interleaving are shown.

the optimized 4PSK STC [6], [7] and the rate–
 _�� 4PSK bit–
interleaved scheme. Results with and without interleaving are
shown for both schemes to demonstrate the necessity of an ap-
propriate frequency–domain interleaving when used in OFDM
to destroy the fading correlations between adjacent tones.

Comparing Figs. 4 and 6, we see that the performance of both
schemes with interleaving in OFDM is slightly worse than in
the ideally fast fading channel, but the performance advantage
of the bit–based channel coding is, even though reduced, still
remarkable. Further, it is expected that for signal constellations
larger than 4PSK the performance advantage of bit–interleaving
will be even larger, as observed in Section V-B.

VI. CONCLUSIONS

Binary convolutional coding with appropriate bit–interleaving
is a widely accepted way to do channel coding with higher or-
der modulation in fading channels with a single transmit an-
tenna. The results in this paper show that bit–based coding
architectures lead to flexible coding schemes for the multiple
Tx antenna case, while enabling reasonable performance in fast
fading. When a convolutional code exhibits a given distance
from the single–Tx capacity limit, it approximately retains this
distance from the respective multiple–Tx capacity limit, indi-
cating the usefulness of the bit–based schemes. An interesting
possibility lies in higher–rate coding with smaller signal sets,
paving the way to combinations like the 2 Tx 8PSK scheme
with Ú��·�¿_�Þ for a spectral efficiency of 4 bit/s/Hz in Fig. 5.
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